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The interactive boundary-layer equations for a flat plate are solved numerically when 
the external velocity field is piecewise linear and would provoke separation if the 
response of the boundary layer were neglected. A comparable problem had already 
been solved by Briley using the full Navier-Stokes equations. The equations are 
solved for various values of the Reynolds number and x,, a parameter defining the 
corner point of the external velocity. It is found that flows with a limited region of 
separation can be computed, but that, if xo is too large, the numerical procedure breaks 
down. Furthermore, this maximum value is a decreasing function of R and seems to 
approach the value 0.12 predicted by classical theory as R+ 00. Comparison with 
Briley’s results indicate a reasonable agreement except that different values of x, are 
appropriate. It is conjectured that, once xo increases above the acceptable maximum, 
rapid changes occur in the flow properties when R is large. 

1. Introduction 
Some ten years ago, Briley (1971) published an important paper on the calculation 

of separation bubbles using the Navier-Stokes equations. He considered the flow in 
a rectangle & < x < +, 0 < y < &, = ye of which the side y = 0 is a fixed wall and on 
the side y = ye the velocity component in the x-direction is prescribed to be 

l -x  ( x <  x,), 
( 1-x, (x 3 x,), 

ae = 

where xo is a constant typically about 0.2. The Reynolds number R of the flow is 
1OS/48 so that ye x 5.4R-4. 

Were R = co, the problem would be closely related to the flow discussed by Howarth 
(1938), and separation would have been expected to occur at  x z 0.12, according to 
classical boundary-layer theory, and to be accompanied by a singularity of the 
Goldstein type (see Goldstein 1948). The question Briley addressed is how far are the 
solutions of the boundary-layer equations relevant to the solutions of the full 
Navier-Stokes equations at large but finite R. To this end he assumed that the 
velocity and vorticity distributions a t  x = &=, are given by Howarth’s solution, that 
the vorticity is zero at  y = ye and that the boundary-layer assumptions hold at  the 
downstream end, x = a, of the rectangle. 

Specific calculations were carried out for x, = 0.157, 0.170, 0.195 and 0.202, and 
the values of the skin friction and displacement thickness which he obtained are 
displayed in figures 1 and 2. It can be seen that Howarth’s solution is well reproduced 
when x-& is small, but wide divergences develop as the classical separation point 
x, = 0.12 is approached, and separation, if indeed it occurs, does so without any hint 
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FIGURE 1 .  Values of reduced skin friction 7 as functions of x for R = 10g/48 and various x,,, taken 
from Briley (1971): --, xo = 0.157; ---. 0.170; - - - -, 0,195; ---, 0.202. The curve ~ shows 
the values obtained by Howarth, and the curve ... shows the values from Blasius’ formula with 
x, = 0.202. 
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FICCRE 2. Values of reduced displacement thickness A taken from Briley ( 1  971) : --, z,, = 0.157 ; 
_-- , 0.170; ---,  0.195; ---, 0.202. The curve - shows the values obtained by Howarth, and 
the curve.. . shows the values from Blasius’ formula with xo = 0.202. 

of a singularity. The line y = ye is close to the outer edge of the boundary layer, but 
tests showed that increasing ye would have little effect on the solution properties. 
More significantly, an attempt to  obtain steady-state solutions at larger values of R 
failed owing to ‘instability which is believed to be of physical origin’ (Briley 1971). 

Since then i t  has become abundantly clear that, while the classical two-dimensional 
boundary layer is of little practical value once separation occurs, i t  is relatively simple 
to modify the theory to  a form which permits separation and reattachment to occur 
in a smooth way. The only requirement is that the external velocity should include 
not only a contribution from classi~al inviscid theory but also a contribution from 
the displacement thickness of the boundary layer. The mathematical justification 
rests on the theory of the triple deck, recently reviewed by Stewartson (1982) and 
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Smith (1982). The regularity of the solution a t  separation was demonstrated 
numerically by Dijkstra (1978) and Smith (1979). 

A study was made by Cebeci, Stewartson & Williams (1980) of separation bubbles 
near the leading edge of a thin airfoil at large but finite values of R, using an 
interactive boundary-layer theory, and was in accord with these fundamental ideas. 
Little difficulty was experienced in computing the boundary layer when the bubble 
is small. Above a certain critical angle of attach a,, however, the iteration procedure 
suddenly failed to  converge, and it was conjectured that in fact no solutions exist 
of the type assumed, even though a t  lower angles of attack no peculiarity of the 
solutions had been developing. A related study using triple-deck theory (Stewartson, 
Smith & Kaups 1982) confirmed this conclusion, and, moreover, demonstrated that 
when separated solutions do exist they are not unique. Further support is provided 
by an earlier study (Stewartson 1970), which shows that a finite singularity cannot 
be removed using a local concept of a triple deck. 

In  this paper we apply interactive theory to Briley’s problem and demonstrate that 
this modification to classical boundary-layer theory predicts flow properties in 
qualitative agreement with the solution of the full Navier-Stokes equations even a t  
values of R as low as those considered by Briley. We shall also show that, as R 
increases, the greatest value of xo a t  which converged solutions can be found 
decreases, and that in all probability i t  approaches 0.12 as R;. 00. Thus the Howarth 
boundary layer is not the limit solution of the interactive equations for any xo > 0.12. 

2. Basic equations 
The interaction theory requires us to  solve the boundary-layer equations 

au aw 
ax ay -+- = 0, 

au au du a2u 
u-+v- = u 2+- ax ay dx aY2 

subject to the boundary conditions 

where 

u = w = O  a t  Y = O ,  x > O  

u(x ,  Y)+u,(x) as Y+m, 

A(x) = J (u,-u)dY. 
0 

Here a prime denotes differentiation with respect to x. The variables y and Yare re- 
lated by the formula Y = yRi, so that in Briley’s problem ye corresponds to Ye = 5.4. 

The solution procedure of the system given by (1)-(4) is similar to that described 
in Cebeci et al. (1980), which, in turn, is based on ideas first formulated by Veldman 
(1979). In  this procedure, first A(x) is replaced by 

1.7208(b + u$ x) x: 
A(x) = = A O ( 4  b+x 

in the Hilbert integral (3), where b is a constant finally chosen to be 0.3, and 
u, = 1 -xo. The correction term in (5) coincides with the displacement thickness due 
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to a uniform velocity of unity when x/b is small, and due to a uniform velocity u, 
when x /b  is large. Hence Ao(x )  has a finite derivative when x = 0, and Ah is very small 
when x is large. To compensate, a term 

(1  -u&) 
1.7208bt 

(b + x ) ~ &  

is added to the right-hand side of (3).  Secondly, the range of integration of the Hilbert 
integral is changed to 0.084 < x < 1.464; the errors induced by this approximation 
are not thought to  be serious. Thirdly, the boundary-layer equations are integrated 
over the range 0 < x < 0.072 using similarity variables x and Y/xi  and also with the 
neglect of the Hilbert integral. Thus the solution a t  x = 0.072 is fixed once and for 
all. Fourthly, the integration from x = 0.084 onwards is carried out in a series of 
sweeps. In  each sweep the Hilbert integral is discretized and the Keller box scheme 
is used to  integrate the equations. As the sweep proceeds, updated values of Ao(x)  
are used to compute u,(x) as soon as they have been generated. Fifthly, the FLARE 
approximation (see Cebeci et al. 1980; Reyhner & Flugge-Lotz 1968), in which u &/ax 
is neglected whenever u < 0, is used. Sixthly, over-relaxation is used to speed the 
convergence. As the sweeps progress, a weak instability develops near the switch from 
the standard form of integration to  the inverse form a t  x = 0.072. This is removed 
by the seventh modification; namely to  smooth the profiles a t  the three adjacent 
points x = 0.072, 0.084 and 0.096, by weighting them in the ratio (a, t ,  a) and using 
the resultant as the starting profile a t  x = 0.084. Finally, to smooth the introduction 
of the Hilbert integral further, the Reynolds number is multipled by 
cosec [ ( X - X ~ )  n/2Ax] in the integration over the four points starting from x1 = 0.084, 
where Ax = 0.012. A similar device is adopted for the last four points of the range of 
integration in x. A number of numerical experiments were carried out to test the 
efficacy of these modifications, and the results were generally satisfactory. 

3. Results and discussion 
Computations were carried out for three values of R,  namely R, = 106/144, 

R, = 106/48 and R, = 108/144, of which the second is relevant to  Briley’s study, and 
we shall discuss the results for this case first. I n  figures 3,4 ,5  we display the variation 
of r = (i3u/i3g)y-o, A and ‘il,(x) as functions of x over the range 0.084 < x < 1.2 for 
xo = 0.21, 0.22, 0.23, 0.24. The properties of these functions for x > 1.2 are affected 
by truncation errors to a very small extent at x = 1.212 and significantly a t  the end 
of the range of integration, but it is not believed that these have a noticeable effect 
on the solution in x < 1.2. It can be seen that the behaviour of r and A near x = 0.084 
is close to that predicted by Howarth’s theory, while, near x = 1.2, T is well 
approximated by the Blasius solution corresponding to u, = 1 -xo. The displacement 
thickness A/u,, however, only agrees locally with that from the Blasius solution a t  
x = 4, and it  is clear that  further downstream some undershoot occurs. 

Comparison with Briley’s solution shows fairly good agreement except for the value 
of xo. Thus the positions of separation and reattachment in Briley’s calculation a t  
xo = 0.202 are close to  the present results a t  xo = 0.23. The two sets of graphs of A 
are also close as far as the peak. Thereafter, however, Briley’s values show a marked 
decrease, whereas in the present studies A decreases quite slowly before rising again 
beyond the range of his data. A typical comparison is shown in figure 6. Both sets 
of data are well above the Blasius formula in x < 0.5, but the boundary-layer 
calculations finally fall just below it near x = 1.2. The different values of xo appearing 
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FIGURE 3. Values of reduced skin friction 7 as functions of x for R = 1OS/48 and various x,, using 
interactive boundary-layer theory. Corresponding results from Howarth and Blasius are added for 
comparison purposes. 
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in the two solutions may be due to the use of a FLARE approximation in the 
boundary-layer approach, and strictly it should be replaced by a DUIT procedure, 
which is an iterative procedure involving upstream integration as described by 
Williams (1975) and Cebeci, Keller & Williams (19793, or by a time-dependent scheme 
as employed by Cebeci (1983). However, the errors made in using FLARE are 
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FIGURE 5 .  Variation of u, (solid lines) and ae (hatched lines) with 5 for various values of zo 
using interactive boundary-layer theory ; R = 106/48. 

not likely to be of a fundamental nature. I n  particular, the failure of the iterations 
to converge cannot be ascribed to a quirk of the method. For triple-deck theory, which 
is completely self-consistent, also only permits steady-state solutions if the domain 
of separation, after appropriate scaling, is limited in extent (Stewartson et al. 1982). 
Again, the forcing velocity fie is used differently. Briley required u = f i e  when Y = Ye, 
whereas here ce is the assumed basic inviscid velocity distribution from which the 
external velocity ue(x) is derived. If R were infinite this would mean that u+ce as 
y+ oc, , and u + u, as Y --f co and y + 0 simultaneously; this condition is a necessary 
requirement for the validity of interactive theory. For finite R we assume that u x u, 
when Y = y& is large and y is small. For example, if R = 106/48, the outer edge of 
the boundary layer may be taken as Y x 7, and the corresponding value of y is x 0.05. 
Another minor source of error which might account for this difference is that, in both 
approaches, Howarth’s solution is used as a boundary condition a t  the upstream end 
of the range of integration. Strictly, the interaction should disturb that solution, and 
in neither method are the final converged flow properties completely smooth there, 
once separation has occurred. Finally, we draw attention to the value Ye of Y at which 
the outer boundary condition is applied in Briley’s solution. He chose Ye = 5.4. To 
be strictly equivalent to  the calculations reported here, Ye should be infinite, although 
difficulties connected with the assumed form of ?ie might then arise because the 
Reynolds number is finite. Briley carried out some tests on this feature and concluded 
that there would be little change if Ye were increased to 7.2, but this edge is still rather 
close to the outer edge of the boundary layer. Carter (1975) used his inverse 
boundary-layer technique to compute the flow properties taking one set of values of 
A found by Briley as prescribed. The agreement between his results and Briley’s is 
good for all properties tested. This suggests that  the principal discrepancies between 
the results of our approach and Briley’s are due to  the calculations of A .  We conclude 
that the region of useful applicability of a Navier-Stokes approach, which strictly 
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FIGURE 7 .  Variation of 7 with z for various values of zo using interactive 

boundary-layer theory; R = 108/144. 

must be bounded above in R, overlaps in the present problem with that of an 
interactive boundary-layer approach, which strictly must be bounded below in R. 
Hence reliable results can be obtained using one of the methods over the whole range 
of values of R. 

Attempts were also made to obtain converged solutions a t  larger values of xo. After 
forty sweeps at xo = 0.26, there were indications that eventually the solution would 
converge, but only after a further large number of sweeps were carried out. At 
xo = 0.28, rapid and violent oscillations developed in 7 after a few sweeps, i.e. changes 
in 7 of order unity occurred in adjacent stations of x and the solutions diverged. 

Similar results were obtained a t  R = R, (=  106/144), the main differences being 
that the critical value of xo to induce separation is reduced from xo = 0.215 a t  R = R, 
to xo = 0.238 a t  R = R, and the corresponding peak A is somewhat enhanced. 

Finally, a study was carried out a t  R = R, ( =  108/144) for xo = 0.185,0.180,0.175 
and 0.150, and the variations of 7, A ,  u, obtained are displayed in figures 7 ,  8 and 
9. The critical value of xo increases to approximately 0.165 and the peak in d is 
enhanced. A study was also made a t  xo = 0.1875, but the separated region grew 
monotonically with the sweep number, and i t  is considered that the solution has failed 
to converge. In  figure 10 we display the variation of the separation and reattachment 
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FIGIJRE 8. Variation of A with z for various values of zo using interactive 
boundary-layer theory; R = 1OS/144. 
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FIGURE 9. Variation of u, (solid lines) and tie (hatched lines) with z for various values of zo 
using interactive boundary-layer theory ; R = 1OS/144. 

points as functions of sweep number, and as contrast show the corresponding 
situation when x,, = 0.1825. 

It appears therefore that, for all values of R considered, there is an upper limit to 
the value of xo at which satisfactory converged solutions can be obtained, although 
the manner of breakdown varies depending on R. A similar phenomenon occurs in 
the leading-edge studies of Cebeci et al. (1980) and in the triple-deck theory of 
marginal separation (see Williams 1975). The critical value of xo for separation is a 
decreasing function of R and no doubt approaches 0.12 as R-too and Howarth’s 
theory becomes relevant. This result is in agreement with the theory of marginal 
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FIGURE 10. Length of the separated region as a function of sweep number for R = 108/144 and 
z,, = 0.1875, 0.1825. The left-hand parts of the curve are the separation point and the right-hand 
parts the reattachment points. 

separation, but x0+0.12 as R+oo rather quicker than that theory would predict. 
It has proved too difficult at  present to obtain satisfactory estimates to the upper 
bounds of xo a t  which solutions can be found, but it does appear that it also decreases 
with R, as the asymptotic theory requires. 

Thus there is a bound to the usefulness of interactive boundary-layer theory, and, 
once it is exceeded, the theory in some sense goes sour. Possibly the global flow 
properties then rapidly change over to those corresponding to Kirchhoff free-streamline 
flow as discussed by Smith (1979). In this connection i t  is noted that Briley 
experienced insuperable difficulties in obtaining a converged solution at values of 
x,, x 0.2 when he increased R by a factor of 9. One possible explanation is that, once 
the upper limit x, of xo is exceeded, the region of separated flow predicted by the 
Navier-Stokes equation rapidly increases with x, - xo and the range of values of x 
in his integration rectangle is inadequate to describe this phenomenon. In that event 
the elucidation of the flow properties in these conditions would be a problem of great 
importance a t  the present time. 

This research was supported under the National Science Foundation Grant no. 
MEA-8018565. The authors are grateful to Dr W. R. Briley for helpful comments on 
an earlier version of this paper. 
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